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The area of logic that deals with propositions is called the propositional calculus or 

propositional logic.  The mathematical approach to logic was first discussed by British 

mathematician George Boole; hence the mathematical logic is also called as Boolean 

logic. 

 

In this chapter we will discuss a few basic ideas. 
 

PROPOSITION (OR STATEMENT) 
 

A proposition (or a statement) is a declarative sentence that is either true or 
false, but not both. 
 
A proposition (or a statement) is a declarative sentence which is either true or 
false but not both. 
 
Imperative, exclamatory, interrogative or open sentences are not statements   in   
logic. 
 
 Example 1 : For Example consider, the following sentences. 

(i)      VSSUT is at Burla. 
(ii)        2 + 3 = 5 
(iii)       The Sun rises in the east. 

(iv) Do your home work. 
(v) What are you doing? 
(vi) 2 + 4 = 8 

(vii) 5 < 4 
(viii) The square of 5 is 15. 

ix) (ix)  x �� 3 �  2 
(x) May God Bless you! 

 
All of them are propositions except (iv), (v),(ix) & (x) sentences ( i), (ii) are true, 
whereas (iii),(iv), (vii) & (viii) are false. 
 
Sentence (iv) is command, hence not a proposition. ( v ) is a question so not a 
statement.  ( ix) is a declarative sentence but not a statement, since it is true or 
false depending on the value of x.  (x) is a exclamatory sentence and so it is not  
a statement. 
 
Mathematical identities are considered to be statements. Statements which are 
imperative, exclamatory, i n t e r roga t ive  or open are not statements in logic. 
 













 
 
We sometimes adopt an order of precedence for the logical connectives.  The 

following table displays the precedence levels of the logical operators. 

 
Operator Precedence 

�™��
 

�š��
 

�š��

�o ��
 

�l  

1 
 

2 
 

3 
 

4 
 

5 

 
LOGICAL EQUIVALANCE:  

 
Compound  propositions  that  have  the  same  truth  values  in  all possible 

cases are called logically equivalent. 

 
Definition: The compound propositions P and Q are said to be logically 

equivalent if P �l  Q is a tautology.  The notation P �{ Q denotes that P and Q 

are logically equivalent. 

 
Some equivalence statements are useful for deducing other equivalence statements.  

The following table shows some important equivalence. 

 
 Logical Identities or Laws of Logic: 
 

Name Equivalence 

1.   Identity Laws 
 
 
2.   Domination Laws 

 
 
3.   Double Negation 

 
4.   Idempotent Laws 

 
 
5.   Commutative Laws 

P �š T �{ P 
P �› F �{ P 
P �› T �{ T 
P �š F �{ F 

�™�����™��P �� �{ P 
 

P �› P �{ P 
P �š P �{ P 

P �› Q �{ Q �› P 
P �š Q �{ Q �š P 

6.   Associative Laws �� P �› Q �� �› R �{ P �› ��Q �› R ����
�� P �š Q �� �š R �{ P �š ��Q �š R �� 







 
Definition: A propositional variable is a symbol representing any proposition.  

Note that a propositional variable is not a proposition but can be replaced by a 

proposition. 

Any statement involving propositional variable and logical connectives is a well 

formed formula. 

Note: A wof is not a proposition but we substitute the proposition in place of 
propositional variable, we get a proposition. 
 

E.g. �™���� P �› Q�� �š ���™��Q �š R �� �o  Q,���™����P �o  Q �� etc. 
 
 
 Truth table for a Well Formed Formula: 
 
If we replace the propositional variables in a formula �D by propositions, we get a 

proposition involving connectives.  If �D involves n propositional constants, we get 

2n possible combination of truth variables of proposition replacing the variables. 

 
Example 9: Obtain truth value for �D �  �� P �o  Q �� �š ��Q �o  P �� . 
Solution:  The truth table for the given well formed  formula is given below. 
 

P Q P �o  Q Q �o  P �D 

T 

T 

F 

F 

T 

F 

T 

F 

T 

F 

T 

T 

T 

T 

F 

T 

T 

F 

F 

T 
 
 Tautology: 
 
A tautology or universally true formula is a well formed formula, whose truth 

value is T for all possible assignments of truth values to the propositional 

variables. 

 
Example 10  : Consider P �› �™��P , the truth table is as follows. 
 

P �™��P P �› �™��P 

T 
 

F 

F 
 

T 

T 
 

T 
 

               P �› �™��P 
tautology. 

always takes value T for all possible truth value of P, it is a 

 
 
 
 
 



 

 Contradiction or fallacy: 
 
A contradiction or (absurdity) is a well formed formula whose truth value is 

false (F) for all possible assignments of truth values to the propositional 

variables. 

Thus, in short a compound statement that is always false is a contradiction. 

 
Example 11 : Consider the truth table for P �š �™��P . 
 

P �™��P P �š �™��P 

T 
 

F 
F 

 

T 
F 

 

F 
 
�?��P �š���™��P always takes value F for all possible truth values of P, it is a 
Contradiction. 
 
 Contingency: 
 
A  well  formed  formula  which  is  neither  a  tautology  nor  a contradiction is 
called a contingency. 
 
Thus, contingency is a statement pattern which is either true or false depending 
on the truth values of its component statement. 
 
Example 12: Show that �™���� p �›��q �� and �™��p���š���™��q are logically equivalent
. 

Solution : The truth tables for these compound proposition is as follows. 
 

1 2 3 4 5 6 7 8 

P Q �™��P �™��Q P �› Q �™���� P �› Q �� �™��P �š �™��Q 6 �l  7 

T 

T 

F 

F 

T 

F 

T 

F 

F 

F 

T 

T 

F 

T 

F 

T 

T 

T 

T 

F 

F 

F 

F 

T 

F 

F 

F 

T 

T 

T 

T 

T 
 

We can observe that the truth values of �™���� p �› q ����and �™��p �š �™��q agree for all possible 
combinations of the truth values of p and q. 















 

 
 
 

Example16: 

Test the validity of the following arguments : 

1.  If milk is black then every crow is white. 

2.  If every crow is white then it has 4 legs. 

3.  If every crow has 4 legs then every Buffalo is white and brisk. 

4.  The milk is black. 

5.  So, every Buffalo is white. 



 
 
Solution : 
 
 

Let  P : The milk is black 

Q : Every crow is white 

R : Every crow has four legs. 

S : Every Buffalo is white 

T : Every Buffalo is brisk 

The given premises are 

(i)  P �o  Q 

(ii)  Q �o  R 

(iii)  R �o  S���š��T 

(iv)  P 

The conclusion is S. The following steps checks the validity of argument. 

1.  P �o  Q   premise (1) 

2.  Q �o  R   Premise (2) 

3.  P �o  R   line 1. and 2. Hypothetical syllogism (H.S.) 

4.  R �o  S���š��T 

5.  P �o  S���š��T 

 Premise (iii) 

 Line 3. and 4.. H.S. 

6.  P   Premise (iv) 

7.  S���š��T               Line 5, 6 modus ponens 

8.  S  Line 7, simplification 

�?�� The argument is valid 

 
Example17 : 
Consider the following argument and determine whether it is valid or not. Either I will 

get good marks or I will not graduate. If I did not graduate I will go to USA. I get 

good marks. Thus, I would not go to USA. 

Solution : 
Let  P : I will get good marks. 

Q : I will graduate. 

R : I will go to USA 

The given premises are 
i)  P V �™ Q 
ii)  �™ Q �o  R 
iii)  P 

 
The conclusion is �™ R. 

 





 

is true and the consequent is false; this step is usually done by showing that if 

P(K) were true, then P(K + 1) would also have to be true. This step is called 

induction step. 

In short we solve by following steps. 

1.  Show that P(1) is true. 

2.  Assume P(k) is true. 

3.  Prove that P(k +1) is true using 

P(k) Hence P(n) is true for every n. 

Example 18 : 
Using principle of mathematical induction prove that 

(i) 1 + 2 + 3 + ... + n = n (n + 1) / 2 

(ii) 1 2 + 2 2 + 3 2 + ... + n 2 = n (n + 1) (2n + 1)/ 6  
(iii) 1 3 + 2 3 + 3 3 + ... + n 3 = n 2 (n + 1) 2 / 4  
(iv)  3 n > n 2 for n = 1, n = 2  
(v)  3 n > n 2 for n a positive integer greater than 2. 
(vi) For  any positive integer number n , n 3 + 2 n is divisible by 3  

 

Solution (i) 

Let the statement P (n) be  
 
1 + 2 + 3 + ... + n = n (n + 1) / 2  

STEP 1: We first show that p (1) is true.  
 
Left Side = 1  
 
Right Side = 1 (1 + 1) / 2 = 1  

Both sides of the statement are equal hence p (1) is true.  

STEP 2: We now assume that p (k) is true  
 
1 + 2 + 3 + ... + k = k (k + 1) / 2  

and show that p (k + 1) is true by adding k + 1 to both sides of the above 
statement  
 
1 + 2 + 3 + ... + k + (k + 1) = k (k + 1) / 2 + (k + 1)  
 
= (k + 1)(k / 2 + 1)  
 
= (k + 1)(k + 2) / 2  



 

The last statement may be written as  
 
1 + 2 + 3 + ... + k + (k + 1) = (k + 1)(k + 2) / 2  

Which is the statement p(k + 1).  

 Hence , by method of induction P(n) is true for all n. 

Solution (ii) 

Statement P (n) is defined by  
 
1 2 + 2 2 + 3 2 + ... + n 2 = n (n + 1) (2n + 1)/ 2  

STEP 1: We first show that p (1) is true.  
 
Left Side = 1 2 = 1  
 
Right Side = 1 (1 + 1) (2*1 + 1)/ 6 = 1  

Both sides of the statement are equal hence p (1) is true.  

STEP 2: We now assume that p (k) is true  
 
1 2 + 2 2 + 3 2 + ... + k 2 = k (k + 1) (2k + 1)/ 6  

and show that p (k + 1) is true by adding (k + 1) 2 to both sides of the above 
statement  
 
1 2 + 2 2 + 3 2 + ... + k 2 + (k + 1) 2 = k (k + 1) (2k + 1)/ 6 + (k + 1) 2  

Set common denominator and factor k + 1 on the right side  
 
= (k + 1) [ k (2k + 1)+ 6 (k + 1) ] /6  

Expand k (2k + 1)+ 6 (k + 1)  
 
= (k + 1) [ 2k 2 + 7k + 6 ] /6  

Now factor 2k 2 + 7k + 6.  
 
= (k + 1) [ (k + 2) (2k + 3) ] /6  

We have started from the statement P(k) and have shown that  
 
1 2 + 2 2 + 3 2 + ... + k 2 + (k + 1) 2 = (k + 1) [ (k + 2) (2k + 3) ] /6  

Which is the statement P(k + 1).  

Hence , by method of induction P(n) is true for all n. 

 



 

Solution (iii) 

Statement P (n) is defined by  
 
1 3 + 2 3 + 3 3 + ... + n 3 = n 2 (n + 1) 2 / 4  

STEP 1: We first show that p (1) is true.  
 
Left Side = 1 3 = 1  
 
Right Side = 1 2 (1 + 1) 2 / 4 = 1  

hence p (1) is true.  

STEP 2: We now assume that p (k) is true  
 
1 3 + 2 3 + 3 3 + ... + k 3 = k 2 (k + 1) 2 / 4  

add (k + 1) 3 to both sides  
 
1 3 + 2 3 + 3 3 + ... + k 3 + (k + 1) 3 = k 2 (k + 1) 2 / 4 + (k + 1) 3  

factor (k + 1) 2 on the right side  
 
= (k + 1) 2 [ k 2 / 4 + (k + 1) ]  

set to common denominator and group  
 
= (k + 1) 2 [ k 2 + 4 k + 4 ] / 4  
 
= (k + 1) 2 [ (k + 2) 2 ] / 4  

We have started from the statement P(k) and have shown that  
 
1 3 + 2 3 + 3 3 + ... + k 3 + (k + 1) 3 = (k + 1) 2 [ (k + 2) 2 ] / 4  

Which is the statement P(k + 1).  

Hence , by method of induction P(n) is true for all n. 

Solution (iv) 

Statement P (n) is defined by  
 
n 3 + 2 n is divisible by 3  

STEP 1: We first show that p (1) is true. Let n = 1 and calculate n 3 + 2n  
 
1 3 + 2(1) = 3  
 

 



 

 
3 is divisible by 3  

hence p (1) is true.  

STEP 2: We now assume that p (k) is true  
 
k 3 + 2 k is divisible by 3  
 
is equivalent to  
 
k 3 + 2 k = 3 M , where M is a positive integer.  

We now consider the algebraic expression (k + 1) 3 + 2 (k + 1); expand it and group like 
terms  
 
(k + 1) 3 + 2 (k + 1) = k 3 + 3 k 2 + 5 k + 3  
 
= [ k 3 + 2 k] + [3 k 2 + 3 k + 3]  
 
= 3 M + 3 [ k 2 + k + 1 ] = 3 [ M + k 2 + k + 1 ]  

Hence (k + 1) 3 + 2 (k + 1) is also divisible by 3 and therefore statement P(k + 1) is true.  

Hence , by method of induction P(n) is true for all n. 

Solution (v) 

Statement P (n) is defined by  
 
3 n > n 2  

STEP 1: We first show that p (1) is true. Let n = 1 and calculate 3 1 and 1 2 and 
compare them  
 
3 1 = 3  
 
1 2 = 1  

3 is greater than 1 and hence p (1) is true.  

Let us also show that P(2) is true.  
 
3 2 = 9  
 
2 2 = 4  

Hence P(2) is also true.  

STEP 2: We now assume that p (k) is true  
 
3 k > k 2  



 

Multiply both sides of the above inequality by 3  
 
3 * 3 k > 3 * k 2  

The left side is equal to 3 k + 1. For k >, 2, we can write  
 
k 2 > 2 k and k 2 > 1  

We now combine the above inequalities by adding the left hand sides and the 
right hand sides of the two inequalities  
 
2 k 2 > 2 k + 1  

We now add k 2 to both sides of the above inequality to obtain the inequality  
 
3 k 2 > k 2 + 2 k + 1  

Factor the right side we can write  
 
3 * k 2 > (k + 1) 2  

If 3 * 3 k > 3 * k 2 and 3 * k 2 > (k + 1) 2 then  
 
3 * 3 k > (k + 1) 2  

Rewrite the left side as 3 k + 1  
 
3 k + 1 > (k + 1) 2  

Which proves that P(k + 1) is true  

Hence , by method of induction P(n) is true for all n. 

Solution (vi) 

Statement P (n) is defined by  
 
n! > 2 n  

STEP 1: We first show that p (4) is true. Let n = 4 and calculate 4 ! and 2 n and compare 
them  
 
4! = 24  
 
2 4 = 16  

24 is greater than 16 and hence p (4) is true.  

STEP 2: We now assume that p (k) is true  
 
k! > 2 k  



 

Multiply both sides of the above inequality by k + 1  
 
k! (k + 1)> 2 k (k + 1)  

The left side is equal to (k + 1)!. For k >, 4, we can write  
 
k + 1 > 2  

Multiply both sides of the above inequality by 2 k to obtain  
 
2 k (k + 1) > 2 * 2 k  

The above inequality may be written  
 
2 k (k + 1) > 2 k + 1  

We have proved that (k + 1)! > 2 k (k + 1) and 2 k (k + 1) > 2 k + 1 we can now 
write  
 
(k + 1)! > 2 k + 1  

We have assumed that statement P(k) is true and proved that statement P(k+1) is 
also true.  

Hence , by method of induction P(n) is true for all n. 

 































 
 

Thus, if a R b, then we enter 1 in the cell (a, b) and 0 otherwise. Same relation can 

be represented pictorially as well, as follows: 
 
 

1  x 

2  y 
3 
4  z 

 
 

Fig 2 
 
Thus, two ovals represent sets A and B respectively and we draw an arrow from  

a �•  A to b �•  B, if a R b. 

If the relation is from a finite set to itself, there is another way of pictorial representation, 
known as diagraph. 
 
For example, let A = {1, 2, 3, 4} and R be a relation from A to itself, defined 
as follows: 
 
 

R = {(1, 2), (2, 2), (2, 4), (3, 2), (3, 4), (4, 1), (4, 3)} Then, the diagraph of R is 
drawn as follows: 

 
 
 

1  2 
 
    
  
 

3  4 
 
 

Fig 3 
 

The   directed   graphs   are   very   important   data   structures   that   have 
applications in Computer Science (in the area of networking). 

 
Definition : Let A, B and C be three sets. Let R be a relation from A to B and S 

be a relation from B to C. Then, composite relation R�qS, is a 
relation from A to C, defined by, a(R�qS)c, if there is some b �•  B, such 
that a R b and b S c. 

 
 

 
 
Example 6: Let A = {1, 2, 3, 4}, B = {a, b, c, d},C = {x, y, z } and let R = {(1, a), (2, d), 

(3, a), (3, b), (3, d)} and S = {(b, x), (b, z), (c, y), (d, z)}. 
 
 
 
 
 



 
Pictorial representation of the relation in Example 6 can be shown as 
below (Fig 4). 

 
 
 
 

1  a 
2  b  

x 
3  c  y 
4  d  z 

 
 
 
 

Fig.4 
 

Thus, from the definition of composite relation and also from Fig 4, R�qS 
will be given as below. 

 
R�qS = {(2, z), (3, x), (3, z)}. 

 
There  is  another  way  of  finding  composite  relation,  which  is  using 
matrices. 

 
Example7: Consider relations R and S in Example 6. Their matrix representations are 

as follows. 
�§ 1 
� �̈�

M �  �  ̈0 
R �  ̈1 

�© 0 

0  0  0 �·��
� �̧�

0  0  1 � �̧�
1  0  1 � �̧�
0  0  0 �¹��

�§ 0  0  0�·��
� �̈� � �̧�

M   �  �  ̈1  0  1 � �̧�
S  �  ̈0  1  0� �̧�

�© 0  0  1 �¹��







 
Solution : 

a)  R is not symmetric, since �� 2, 3�� �•��R , but ��3, 2�����•��R , 

b)  R is not asymmetric since ��3, 3�� �•��R 
c)  R is antisymmetric. 

��������
Example 23 : Determine whether the relation R on a set A is reflexive,  irreflexire, 

symmetric, asymmetric antisymmetric or transitive. 
 

I)  A = set of all positive integers, a R b iff a �� b ���d��2 . 
 

Solution : 
1)  R is reflexive because 

 
 
a �� a ��� ��0������2,���� ��a���•�� A 

 

2)  R is not irreflexive because  1 ��1��� ��0������2 
of all positive integers.) 

 

for 1���•��A 
 

(�?A is the set 

3)  R is symmetric because a �� b ���d��2���Ÿ�� b �� a ���d��2 �? a��R��b���Ÿ��b��R��a 
 

4)  R is not asymmetric because  5 �� 4 ���d��2 
�?��5��R��4���Ÿ��4��R��5 

5)  R is not antisymmetric because 1��R��2 
 

2��R��1���Ÿ�� 2 ��1���d��2 . But 1���z��2 

 

and we have  4 �� 5 ���d��2 
 
 
& 2��R��1 1��R��2���Ÿ��1 �� 2 ���d��2 & 

 

6)  R is not transitive because 5 R 4, 4 R 2 but 5  R 2 
 

 

II) A��� ��Z �� ,��a��R��b iff a �� b ��� ��2  
 
 
Solution : 

As per above example we can prove that R is not reflexive, R is 

irreflexive, symmetric, not asymmetric, not antisymmetric & not transitive 

 
III)  Let A = {1, 2, 3, 4} and R {(1,1), (2,2), (3,3)}  
1)  R is not reflexive because �� 4, 4�����•��R 

2)  R is not irreflexive because ��1,1�����•��R 
3)  R is symmetric because whenever a R b then b R a. 
4)  R is not asymmetric because  R ���Ÿ�� R 
5)  R is antisymmetric because 2��R��2,��2��R��2���Ÿ��2��� ��2 
6)  R is transitive. 
IV)  Let A��� ��Z �� ,��a��R��b iff GCD (a, b) = 1 we can say that a and b are 
relatively prime.  

 
1)  R is not reflexive because ��3, 3�����z��1 it is 3. �? ��3, 3�����•��R 
2)  R is not irreflexive because (1, 1) = 1 



 
 

3)  R is symmetric because for �� a, b ����� ��1���Ÿ����b, a ����� ��1 . �?��a��R��b���o ��b��R��a 
4)  R  is  not  asymmetric  because  (a,  b)  =  1  then  (b,  a)  =  1. 

�?��a��R��b���o ��b��R��a 
5)  R is not antisymmetric because 2 R 3 and 3 R 2 but 2���z��3 . 
6)  R  is  not  transitive  because  4  R  3,  3  R  2  but  4  R 2  because 

(4,2) = G.C.D. (4,2) = 2���z��1 . 
 

V)  A = Z a R b iff a���d��b������1  
 

1)  R is reflexive because a���d��a������1�� �› ��a���•��| A . 
2)  R is not irreflexive because 0���d��0������1 for �2���•���$ . 
3)  R is not symmetric because for 2���d��5������1 does not imply 5���d��2������1. 
4)  R is not asymmetric because for (2,3) �•  R and also (3,2) �•  R. 
5)  R is not antisymmetric because 5 R 4 and 4 R 5 but 4���z��5 . 
6)  R is not transitive because (6,45) �•  R, (5,4) �•  R but (6,47) �•  R. 

 
 
RELATIONS AND PARTITION: 
 

 
In  this  section,  we  shall  know  what  partitions  are  and  its relationship 
with equivalence relations. 
 
Definition : A partition or a quotient set of a non-empty set A is a collection P 

of non-empty sets of A, such that 
(i)  Each element of A belongs to one of the sets in P. 
(ii) If A1 and A2 are distinct elements of P, then A1�ˆ A2 = �I. 

The sets in P are called the blocks or cells of the partition. 
 
Example : Let A = {1, 2, 3, 4, 5}. The following sets form a partition of A, as A = 

A1 �‰ A2 �‰ A3 and A1 �ˆ ���$����� ���I����A1 �ˆ ���$����� ���I����and��A2 �ˆ ���$����� ���I����
A1 = {1, 2}; A2 = {3, 5}; A3 = {4}. 

 
Example 24: Let A = {1, 2, 3, 4, 5, 6}. The following sets do not form a partition of A, as 

A = A1 �‰ A2 �‰ A3 but A2 �ˆ ���$�����z���I��A1 = {1, 2}; A2 = {3, 5}; A3 = {4, 5, 6}. 

The following result shows that if P is a partition of a set A, then P can be 

used to construct an equivalence relation on A. 

Theorem: Let P be a partition of a set A. Define a relation R on A as a R b if and only if 
a, b belong to the same block of P then R is an equivalence relation on A. 







 
 

Now,  we  shall  draw  Hasse  diagram  from  the  above  diagrams  using following rules. 
(i)  Drop the reflexive loops 

 

 
c 

d 
 
 
 
 

b  e 
 
 
 

a 
 

Fig. 2 
 

 
 

(ii) Drop transitive lines 
 
 

c 
d 

 
 
 
 

b  e 
 
 
 

a 
 
 

Fig. 3 
 

 
 
 
 
 
 
 

(iii)Drop arrows 
 
 

c 
d 

 
 
 
 

b  e 
 
 
 

a 
 

Fig.4 
 
 





 

��
��1, 3������3, 4�����•��R 

�? remove ��1, 4�����•��R 

�� 2, 3������3, 5�����•��R �? remove �� 2, 5�����•��R  and so on. 

�?��R��� ��� �̂�1, 3�� ,����2, 3�� ,����3, 4�� ,����3, 5��� �̀�
��

The Hasse Diagram is 
 
 

4  5 
 
 
 

3 
 
 
 

1  2 
 

 
Example 6 : 
 
Determine matrix of partial order whose Hasse diagram is given as follow - 

 
 
 

4  5 
 

 
 
 
 

2  3 
 
 
 
 

1 
 
 

Solution : 
 

Here A = [1, 2, 3, 4, 5) 
 

Write all ordered pairs (a, a)  ���› ��a���•�� A i.e. relation is reflexive. 



 
 

 
 

Then write all ordered pairs in upward direction. As (1, 2) �•��R  & (2,4) �•��R���Ÿ����1, 4�����•��R  since 
R is transitive. 

 
�?��R��� ��� �̂�1,1��,����2,2��,����3,3��,����4,4��,����5,5��,����1,2��,����2,4��,����2,4��,����1,4 ��,����1,3��,����3,5��,����1,5��� �̀�

��
The matrix MR can be written as - 

��
�� �� ��

�»
�»
�»
�»
�»
�»

�¼

�º

�«
�«
�«
�«
�«
�«

�¬

�ª

� 

10000

01000

10100

01010

11111

RM  

 
 
 
  
 
Now, we shall have a look at certain terms with reference to posets. 

 
Definition : Let (A, �d) be a partially ordered set. Elements a, b �•  A, are said to be comparable, if a �d b 

or b �d a. 
E.g. In example 4, 2 and 4 are comparable, whereas 4 and 9 are not 
comparable. 

 
Definition : Let (A, �d ) be a partially ordered set. A subset of A is said to be a chain if every two 

elements in the subset are related. 
 

Example 7: In the poset of example 4, subsets {1, 2, 4}; {1, 3, 6};{1, 2, 6} and {1, 3, 9} 
 are chains. 

 
Definition : A subset of a poset A is said to be anti-chain, if no two elements of it are related. 

 
Example 8: In the poset of example 4, subsets {2, 9}; {3, 4}; {4, 6, 9}are anti-chains. 

 
Definition : A partially ordered set A is said to be totally ordered if it is chain. 

 
Example 9: Let A = {2, 3, 5, 7, 11, 13, 17, 19} and the relation defined on A be �d.  

Then poset (A, �d) is a chain. 
CLOSURE PROPERTIES 

Consider a given set A and let R be  a  relation on A. Let P be a property of such relations, 
such as being reflexive or symmetric or  transitive. A relation with property P will be called 
a P-relation. The P-closure of an arbitrary relation R on A, written P (R), is a P-relation such 
that 

 







 
Definition : Let (A, �d) be a poset. An element a �•  A is called a maximal 

element, if for no b �•  A, a �z b, a �d b. E.g. In Fig. 4, j and k are maximal 

elements. 
 
Definition : Let (A, �d) be a poset. An element a �•  A is called a minimal element, if for no 

b �•  A, a �z b, b �d a. E.g. In Fig. 4.6, a, b and e are minimal elements. 
 
Definition : Let a, b be two elements in the poset (A, �d). An element c �•  A, is said to be 

an upper bound of a, b if a �d��c and b �d c. E.g. In Fig 7, f1 h are upper bounds 
of b and d. 

 
Definition : Let a, b be two elements in the poset (A, �d). An element c �•  A, is said to be a 

least upper bound of a, b if a �d��c and b �d c and if d is an upper bound of a, b, 
then c �d d. E.g. In Fig 2, f is a least upper bound of b and d. 

 
Definition : Let a, b be two elements in the poset (A, �d). An element c �•  A, is said to be 

a lower bound of a, b if c �d��a and c �d b. E.g. In Fig 6, f, g are lower bounds 
of h and i. 

 
Definition : Let a, b be two elements in the poset (A, �d). An element c �•  A, is said to be 

a greatest lower bound of a, b if c �d��a and c �d b and if d is a lower bound of a, 
b, then d �d c. E.g. In Fig 4, c is a greatest lower bound of e and g. 

 
Definition  :  A  poset  (A,  �d)  is  said  to  be  a  lattice,  if  every  two elements in A have a 

unique least upper bound and a unique greatest lower bound. 
 
E.g. Fig. 6 is not a lattice, because j and k are two least upper bounds of h and i, whereas 

Fig. 7 is a lattice. 
 

 

 

 

 

  

 
 

 

 

 
 





 
When used to represent social networks, we typically use each line to represent 

instances of the same social relation, so that if (a,b) indicates a friendship between the 

person located at node a and the person located at node b, then (d,e) indicates a 

friendship between d and e. Thus, each distinct social relation that is empirically 

measured on the same group of people is represented by separate graphs, which are 

likely to have different structures (after all, who talks to whom is not the same as who 

dislikes whom).  

Every graph has associated with it an adjacency matrix, which is a binary n�un matrix A 

in which aij = 1 and aji = 1 if vertex vi is adjacent to vertex vj, and aij = 0 and aji = 0 

otherwise. The natural graphical representation of an adjacency matrix is a table, such as 

shown in Figure 2.  

 a b c d e f 

a 0 1 0 0 0 0 

B 1 0 1 0 0 0 

c 0 1 0 1 1 0 

D 0 0 1 0 1 0 

e 0 0 1 1 0 1 

f 0 0 0 0 1 0 

 

Figure 2. Adjacency matrix for graph in Figure 1. 

 

Examining either Figure 1 or Figure 2, we can see that not every vertex is adjacent to 

every other. A graph in which all vertices are adjacent to all others is said to be 

complete. The extent to which a graph is complete is indicated by its density, which is 

defined as the number of edges divided by the number possible. If self-loops are 

excluded, then the number possible is n(n-1)/2. If self-loops are allowed, then the 

number possible is n(n+1)/2. Hence the density of the graph in Figure 1 is 6/15 = 0.40.  

A clique is a maximal complete subgraph. A subgraph of a graph G is a graph whose 

points and lines are contained in G. A complete subgraph of G is a section of G that is 

complete (i.e., has density = 1). A maximal complete subgraph is a subgraph of G that is 

complete and is maximal in the sense that no other node of G could be added to the 

subgraph without losing the completeness property. In Figure 1, the nodes {c,d,e} 
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The element is called as generator of the group. 
If G is a group and a is its generator then we write    G � �� a �!��
For  example  consider 

 
G �  {1, ��1, i, ��i} .  G  is  a  group  under  the  binary 
operation  of  multiplication.  Note  that G � �� i �! .  Because 

a��� ��� î,��i2,��i3 ,��i4� �̀�� ��� î,���� 1,���� i,��1��� �̀�
SUBSEMI GROUP : 
 
 
Let (S, �
 ) be a semigroup and let T be a subset of S. If T is closed under operation �
 , 

then (T, �
 ) is called a subsemigroup of (S, �
 ). 
 
 
Submonoid : Let (S, �
 ) be a monoid with identity e, and let T be a non- empty subset 

of S. If T is closed under the operation �
 and e �•  T, then (T, �
 ) is called a 
submonoid of (S, �
 ). 

 
 
Subgroup : Let (G, �
 ) be a group. A subset H of G is called as subgroup of G if (H, �
 ) 

itself is a group. 
 
 

Necessary and Sufficient  Condition  for subgroup : Let (G;  �
 ) be a group. A 
subset H of G is a subgroup of G if and only if �� a, b �•  H a �
 b��1 �•  H 

 
PERMUTATION GROUP 
 

Definition : A permutation on n symbols is a bijective function of the set 

A = �1̂, 2,...n �  ̀onto  itself.  The set of all  permutations  on  n symbols  is 

denoted by Sn. If  �D is a permutation on n symbols, then  �D  is completely 

determined by its values �D ��1��,���D ��2��.....�D ��n�� . We use following notation 

�§ ������1��������������������2������������������3��������������������������n  �·��
to denote �D���  ̈�D ��1�����������D ��1�����������D ��3�������������������D ��n�� �  ̧. 

 
 
 

�§1������2������3������4��������5 �·��
For example �D��� �̈� �  ̧ denotes the permutation on the 5 symbols 

�© 5����3������1��������2��������4 �¹��
(1,2,3,4,5). �D maps 1 to 5, 2 to 3, 3 to 1, 4 to 2 and 5 to 4. 

 
 

Product of permutation : - Let A = {1,2,3,4} 
�§1������2������3������4 �·��

Let �D��� �̈� � �̧�
�© 3����2������4������1 �¹��

�§1������2������3������4 �·��
and �E��� �̈� �  ̧. 

�© 4����3������2�������� �¹��
�§1������2������3������4 �· �§1������2������3������4 �·�� �§1������2������3������4 �·��Then �D��O���E��� �� � �̈� �  ̧� �̈� �  ̧ = � �̈� � �̧�
�© 3����2������4������1 �¹ �© 4����3������2�������� �¹�� �© 2����3������1��������4 �¹��

Cycle - an element �D���•��sn is called a cycle of lingth r if  ��  r symbols 





 

a)         Write the sets Z3 and Z6 

b)  Show  that  the  algebraic  systems  (Zm, +  m)  and  (Zm,  �u  m)  are 
monoids. 

c)         Find the inverses of elements in Z3 and Z4 with respect to +3 and �u4 

respectively. 
 

Solution : a) Z3 for (Z3,+ 3) ={[0], [1], [2]} 
 Z6 for (Z6, + 6) = {[0], [1], [2], [3], [4], [5] } 

Z3 for (Z3,�u 3) ={[0], [1], [2]} 
Z6 for (Z6,�u 6) = {[0], [1], [2], [3], [4], [5] } 

 

Example 3 : Determine whether the following set together with the binary 
operation is a semigroup, a monoid or neither. If it is a monoid, specify the 
identity. If it is a semigroup or a monoid determine whether it is 
commutative. 
 
i)  A = set of all positive integers. 

a �
 b �  max{a, b} i.e. bigger of a and 
b   

ii)  Set S = {1, 2, 3, 6, 12} where a �
 b �  G.C.D.(a, b) 

 
iii)  Set S ={1,2,3,6,9,18) where a �
 b �  L.C.M .���� a,��b����
iv)  Z, the set of integers, where a �
 b �  a �� b �� ab 

v)  The set of even integers E, where a �
 b �  
ab 
2 

 

vi)  Set of real numbers with a �
 b �  a �� b �� 2 
vii)  The set of all m�un matrices under the operation 
of addition. 

 
 

 

 
Solution : 
i)  A = set of all positive integers. a �
 b �  max{a, b} i.e. bigger of a and b. 

 
 

Closure Property: Since Max {a, b} is either a or b �?  a �
 b �•  A . Hence 
closure property is verified. 

 
 

Associative Property : 
Since a �
 (b �
 c) �  max{{a, b}, c} �  max {a, b, c} 

= Max{a,{b, c} } = (a.b).c 
�? �
 is associative. 
�? (A, �
 ) is a semigroup. 

 
 

Existence of identity : 1 �•  A is the identity because 
1.a = Max{ 1,a}= a  ��  a�•A 
�? (A, �
 ) is a monoid. 

 
 

Commutative  property  :  Since  Max{a,  b)  =  max{b,  a)  we  have 
a �
 b �  b �
 a Hence �
 is commutative. 

 
 

Therefore A is commutative monoid. 



 

 
 

ii)  Set S = { 1,2,3,6,12} where a �
 b �  G.C.D. (a, b) 
 

* 1 2 3 6 12 
1 1 1 1 1 1 
2 1 2 1 2 2 
3 1 1 3 3 3 
6 1 2 3 6 6 

12 1 2 3 6 12 
Closure  Property  :  Since  all  the  elements  of  the  table  �•   S,  closure 
property is satisfied. 
 
Associative Property :Since 

a �
 (b �
 c) �  a �
 (b �
 c) �  a �
 GCD{b, c} �  GCD {a, b, c} 

And (a �
 b) �
 c �  GCD{a, b} �
 c �  GCD{a, b, c} 

�? a �
 (b �
 c) �  (a �
 b) �
 c 

�? �
 is associative. 
�? (S, �
 ) is a semigroup. 

 
 

Existence  of identity:  From the table  we observe  that  12  �•   S is the 
identity 
�? (S, �
 ) is a monoid. 

 
 

Commutative   property   :   Since   GCD{a,b}=   GCD{b,a)   we   have 
a �
 b �  b �
 a . Hence �
 is commutative. 

 
Therefore A is commutative monoid 

 
(iii) Set S ={ 1,2,3,6,9, 18} where a �
 b =L.C.M. (a,b) 

 
 

* 1 2 3 6 9 18 
1 1 2 3 6 9 18 
2 2 2 6 6 18 18 
3 3 6 3 6 9 18 
6 6 6 6 6 18 18 
9 9 18 9 18 9 18 

18 18 18 18 18 18 18 
 

Closure  Property  :  Since  all  the  elements  of  the  table  �•   S,  closure 
property is satisfied. 

 
 

Associative Property : Since a �
 (b �
 c) �  a �
 LCM {b, c} �  LCM {a, b, c} 

And (a �
 b) �
 c �  LCM {a, b} �
 c �  LCM {a, b, c} 

�?�� a �
 (b �
 c) �  (a �
 b) �
 c 

�?�� �
 is associative. 
�?�� (S, �
 ) is a semigroup. 

 



 

Existence  of identity  :  From the table we observe  that  1  �•  S is the 
identity. 
�?�� (S, �
 ) is a monoid. 

 
Commutative  property  :  Since  LCM{a,  b}  =  LCM{b,  a}  we  have 
a �
 b �  b �
 a . Hence �
 is commutative. 
 

 
Therefore A is commutative monoid. 

 
 

(iv)  Z, the set of integers where - a * b = a + b - ab 
 
 

Closure Property : - a,��b���•��z then a �� b������ab���•��z������ a,b 
so * is closure. 
 
 

Associate Property : Consider a,��b���•��z 

��a��*��b����*��c��� ����a������b������ab ����*��c 

��������������������������������� ��a������b������ab������c��������a ����b���� ab ����c 

��������������������������������� ��a������b���� ab������c���� ac������bc���� abc 
� ��a������b �� c �� ab �� ac �� bc �� abc 

 
 
 
 
 
 
 
(1) 

 

 

a��*����b * c ����� ��a��*����b���� c �� bc ����
���������������������������������  a���� b �� c �� bc �� a ��b �� c �� bc ����

� ��a �� b �� c �� bc �� ab �� ac �� abc 
(2)From 1 & 2 

��a��*��b����* c �  a��*����b * c ������������ a,b,c �•  z 

�?* is associative 
�? (z, &) is a semigroup. 

 
 

Existence of Identity : Let e be the identity element a * e = q 
a + e - q.e = a 
a + e - a.e = a 
e ( 1-a) = 0 
e = 0 or a = 1 
But a���z��1 
E = 0 
�? O���•��Z is the identity element. 
�? (Z, *) is monoid. 

 
 

Commutative property : �� ��a,��b���•��z 
a * b = a + b - ab 

= b + a - ba 
= b * a 

�?* is commutative 
�? (Z, *) is commutative monoid. 

 
 

O�•Z is the identity 





















 

Step 2 :  
 
�� ��y��� ��axa��1���•��G������x���•��G��s.t. 

fa (x)��� ��a��xa��1
 

�?��f is onto. 
 

Step-3 : Show that f is homomorphism. 
For x, y�•G 

f ( x) �  a �
 x �
 a��1 , f ( y) �  a �
 y �
 a��1 
 

and f ( x �
 y) �  a �
 ( x �
 y) �
 a��1 
 

Consider f ( x �
 y) �  a �
 ( x �
 y) �
 a��1 
 

for  x, y�•G 

�?�� f ( x �
 y) �  a �
 ( x �
 e �
 y) �
 a��1 
 

e�•G is identity 

= a �
 ( x �
 a��1 �
 a �
 y) �
 a��1 a��1 �
 a �  e 
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determined by the element a�•G. The element a is called the representative 
element of the left coset aH. 
 
Right Coset : Let (H, �
 ) be a subgroup of (G, �
 ). For any a �•  G, the set 
of Ha defined by 
Ha��� ���>h��* a | h �•��H�@��
is called the  right coset of H in G determined by the element a�•G. The 
element a is called the representative element of the right coset Ha. 

 
Theorem : Let (H, �
 ) be a subgroup of (G, �
 ). The set of left cosets of H 
in G form a partition of G. Every element of G belongs to one and only one 
left coset of H in G. 

 

�/�D�J�U�D�Q�J�H�¶��Theorem:  The order of a subgroup of a finite group divides 
the order of the group. 

 
Corollary : If (G,  �
 ) is a finite group of order n, then for any a�•G, we 
must have an=e, where e is the identity of the group. 

 

Normal  Subgroup  : A subgroup (H,  �
 ) of (G,  �
 ) is called a normal 
subgroup if for any a�•G, aH = Ha. 
Example 8 : Determine all the proper subgroups of symmetric group (S3, 
o). Which of these subgroups are normal? 

 
Solution : S = {1, 2, 3}. S3 = Set of all permutations of S. 
S3 = {f0, f1, f2, f3, f4, f5 } where 

 

 
�§1  2  3 �·��

f0 �  � 1̈  2  3 �  ̧, 
 

�§ 1  2  3 �·��
f3 �  �  ̈2  1  3 �  ̧, 

�§1  2  3 �·��
f1 �  � 1̈  3  2 �  ̧, 
 

�§ 1  2  3 �·��
f4 �  �  ̈2  3  1 �  ̧, 

�§ 1  2  3 �·��
f3 �  �  ̈3  2  1 � �̧�
��

�§ 1  2  3 �·��
f5 �  �  ̈3  2  1 � �̧�
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Let us prepare the composition table. 
 

0 f0 f1 f2 f3 f4 f5 

f0 f0 f1 f2 f3 f4 f5 

f1 f1 f0 f4 f5 f2 f3 

f2 f2 f3 f0 f4 f3 f1 

f3 f3 f4 f5 f0 f1 f2 

f4 f4 f3 f1 f2 f5 f0 

f5 f5 f2 f3 f1 f0 f4 

 
From the table it is clear that {f0, f1}, {f0, f2,}, {f0, f3) and {f0, f4, f5} are 
subgroups of (S3, 0): The left cosets of {f0, f1} are {f0, f1}, {f2, f5}, {f3, f4}. 
While the right cosets of {f0, f1} are {f0, f1}, {f2, f4}, {f3, f5}. Hence {f0, 
f1} is not a normal subgroup. 

 
 

Similarly we can show that {f0, f2} and {f0, f1} are not normal subgroups. 
On the other hand, the left and right cosets of {f0, f4, f5} are {f0, f4, f5} and 
{f1, f2, f3}. 
Hence {f0, f4, f5} is a nomal subgroup. 

 
 

Example  9 :  Let  S  =  {1,  2,  3}.  Let  G  =  S3   be  the  group  of  all 
permutations of elements of S, under the operation of composition of 
permutations. 

 
Let H be the subgroup formed by the two permutations 

 
�§ 1  2  3 �·��

�§1  2  3 �·��
� �̈� �  ̧and 
�©1  2  3 �¹��

�  ̈3  2  1 �  ̧. Find the left coset of H in G. Is H a normal subgroup? Explain
 

your notion of composition clearly.   
 
 

Solution : Let 
�§1  2  3 �·��

f0 �  � 1̈  2  3 �  ̧, 
 

�§ 1  2  3 �·��
f3 �  �  ̈2  1  3 �  ̧, 

 

�? H={f0, f2} 

 
 

�§1  2  3 �·��
f1 �  � 1̈  3  2 �  ̧, 
 

�§ 1  2  3 �·��
f4 �  �  ̈2  3  1 �  ̧, 

 
 

�§ 1  2  3 �·��
f3 �  �  ̈3  2  1 � �̧�
��

�§ 1  2  3 �·��
f5 �  �  ̈3  2  1 � �̧�

��



 
��

��
Left Cosets of H in G : 
f0H = {f0f0, f0f2} = {f0, f2}                  f1H = {f1f0, f1f2} = {f1, f4} 
f2H = {f2f0, f2f2} = {f2, f0}                  f3H = {f3f0, f3f2} = {f3, f5} 
f4H = {f4f0, f4f2} = {f4, f1}                  f5H = {f5f0, f5f2} = {f5, f3} 

 

 
Right Cosets of H in G 
Hf0 = {f0f0, f2f0} = {f0, f2}  Hf1 = {f0f1, f2f1}={f1, f3} 
Since f1 H �z Hf1 , H is not a normal subgroup of G. 

 

Example 10 : Define a normal sub-group. Let S3 = Group of all 
permutations of 3 elements (say 1, 2, 3). For the following subgroups of S, 
find all the left cosets . Subgroup of A = {1,(1,2)} 

 
 

Where I = identity permutation, (1, 2) is a transposition. Is A a normal 
subgroup. State a normal subgroup of the above group if it exists.    
 
Solution :  H = {f0, f3} 
The left cosets of H in G are as follow. 

f0H = {f0, f3} f1H = {f1, f5} f2H = {f2, f4} 
f3H = {f3, f0} f4H = {f4, f2} f5H = {f5, f1} 

Consider a right coset Hf1 = {f1, f4}  
Since f1H �z Hf1, H is not a normal subgroup of G. 
 

RING: An algebraic structure (R, +, o) is said to be a Ring if it satisfies :  
�x (R, +) is a commutative Group. 
�x (R, o) is a semigroup and 
�x (R, +, o) satisfies the distributive property. 

 
FIELD: An algebraic structure (F, +, o) is said to be a Field if it satisfies :  

�x (F, +) is a commutative Group. 
�x (F, o) is a commutative group and 
�x (F, +, o) satisfies the distributive property. 

 
Zero Divisor: A commutative ring is said to have a zero divisor if the product of two non-    
zero element is zero. For example, the product of two non-  zero matrices may zero. 
 
INTEGRAL DOMAIN: A commutative without a zero divisor is called an integral 
domain. 
 
THEOREM: Every finite integral domain is a field. 
 
THEOREM: Every field is an integral domain. 
 
 
 
 
 
 
 
 
 
 

























 
 

Solution : (a) e �� b �� �  010100 (b) e �� b �� �  011101 
 
 

Example 5 : Let e : B2 �o  B6 is an (2,6) encoding function defined as 
e(00) = 000000,  e(01) = 011101 
e(10) = 001110,  e(11) = 111111 

 
a) Find minimum distance. 
b) How many errors can e detect? 
c) How many errors can e correts? 

 
Solution : Let x0,��x1,��x2,��x3 ���•��B

6 where x0 ��� ��000000,��x1���  011101, 

x2��� ��001110,��x3 ��� ��111111 
 

w �� x0 ���†��x1 ����� ��w����011101����� ��4 

w �� x0 ���†��x2 ����� ��w����001110����� ��3 

w �� x0 ���†��x3 ����� ��w����111111����� ��6 

w �� x1���†��x2 ����� ��w����010011����� ��3 

w �� x1���†��x3 ����� ��w����100010����� ���� 
w �� x2 ���†��x3 ����� ��w����110001����� ��3 

Minimum distance = e = 2 
d) Minimum distance = 2 
An encoding function e can detect k or fewer errors if the minimum 

distance is k + 1. �?��k������1��� ��2���?��k��� ��1 
�?The function can detect 1 or fewer (i.e. 0) error. 

 
e)  e can correct k or fewer error if minimum distance is 2k + 1. 

�?2k + 1 = 2 

�?k =  1 
2 

�?e can correct  1 
2 

or less than  1 
2 

 

i.e. 0 errors. 

 
GROUP CODE : 

 

 

An �� m,��n ����
��

encoding function e : Bm �o  Bn 
 

is called a group code 
if range of e is a subgroup of Bn. i.e. (Ran (e), �† ) is a group. 

 
Since Ran (e) C��Bn and if (Ran (e), �† ) is a group then Ran(e) is a 

 

subgroup of Bn. If an encoding function e : Bm �o  Bn 
 

(n < n) is a group 
code, then the minimum distance of e is the minimum weight of a nonzero 
codeword. 

��
 

 
 

. 
 

 



 
 

 
 

DECODING AND ERROR CORRECTION : 
 

 

Consider an �� m,��n �� encoding function e : Bm �o  Bn , we require an 

(n,m) decoding function associate with e as d : Bn �o  Bm . 
 

The method to determine a decoding function d is called maximum 
likelihood technique. 

 
Since Bm ��� ��2m . 

 
 

Let xk ���•��B
m  be a codeword, k = 1, 2, ---m and the received word is y then. 

Min 1���d��k���d��2m ��� d̂���� xk ,��y ��� �̀�� ��d���� xi,��y ����for  same  i  then  xi   is  a  codeword 

which is closest to y. If minimum distance is not unique then select on 
priority 

 
 

MAXIMUM LIKELIHOOD TECHNIQUE : 
 

 

Given an �� m,��n �� encoding function e : Bm �o  Bn , we often need to 

determine an  �� n,��m ����
��

decoding function d : Bn �o  Bm 
 
associated with e. 

We now discuss a method, called the maximum likelihood techniques, for 

determining  a decoding function d for a given e.  Since  Bm has  2m 

elements, there are 2m 
a fixed order. 

code words in Bn .  We first list the code words in 
 

��1��  ��2���� ��2m ����
x ,��x ,��...,��x 

 
 

If the received word is 
 
x1 , we compute �G ��x��i ��, x1 ����

��

for 1 �d i �d 2m 

 
and choose the first code word, say it is x�� s �� , such that 

 
 

min 
1�di �d2m 

��� �̂G ��x��i �� ,��x1 ���  ̀�  �G ��x�� s �� ,��x1 ����
��

��
��
��

That is, x�� s ��  is a code word that is closest to 
 
x1 , and the first in the 

 

list.  If x�� s �� �  e ��b �� , we define the maximum likelihood  decoding function 
d associated with e by  

d �� xt �� �  b 



 
 

Observe that d depends on the particular order in which the code 
 

words in e ��Bn ����
��

are listed.  If the code words are listed in a different 

order,   we  may  obtain,   a  different   likelihood   decoding   function   d 
associated with e. 

 
Theorem  : Suppose that e is an �� m,��n ���� encoding function and d is a 

maximum likelihood decoding function associated with e.   Then  ��e,��d �� 
can correct k or fewer errors if and only if the minimum distance of e is at 
least 2k �� 1 . 

 
�ª 1  1  0 �º��
�«�� �»��
�« 0  1  1 �»��

Example  : Let  m �  2,��n �  5 and H �  �«��1 0  0�� �» .  Determine the 
�«�� �»��
�« 0  1  0 �»��
�«�¬ 0  0  1 �»�¼��

group code eH : B
2 �o  B5 .   

 

 

Solution : We have B2 �  � 0̂0,��01,��10,��11�  ̀.  Then e ��00�� �  00x1x 2x3 

where 
x1 �  0.1 �� 0.0 �  0 
x2 �  0.1 �� 0.1 �  0 
x3 �  0.0 �� 0.1 �  0 

�?����e ��00�� � ��00000 
 

Now,  
e ��01�� �  01x1x2 x3 

 

where  
x1 �  0.1 �� 1.0 �  0 
x2 �  0.1 �� 1.1 �  1 
x3 �  0.0 �� 1.1 �  1 

�?����e ��01�� � ��01011 
 

Next  
e ��10�� �  10 x1x2 x3 
x1 �  1.1 �� 0.0 �  1 
x2 �  1.1 �� 1.0 �  1 
x3 �  1.0 �� 0.1 �  0 

�?����e ��10�� �  10110 
e ��11�� �  11101 



 
 

�ª 1  0  0 �º��
��
��
��

Example  : Let 

�«�� �»��
�« 0  1  1 �»��
�« 1  1  1 �»��H �  �«���� �� �»��

��
��
��
be a parity check matrix.  determine 

�« 1  0  0 �»��
�« 0  1  0 �»��
�«�� �»��
�¬ 0  0  1 �¼��

the ��3,��6�� group code eH : B
3 �o  B6 . 

 
Solution : First find 

e ��110�� ,����e ��111�� . 
e ��000�� �  000000 

e ��001�� �  001111 

e ��010�� �  010011 

e ��100�� �  011100 

e ��000�� ,����e ��001�� ,����e ��010�� ,����e ��011�� ,����e ��100 ��,����e ��101��, 
 
 

e ��100�� �  100100 

e ��101�� �  101011 

e ��110�� �  110111 

e ��111�� �  111000 
 

 
 

Example  : Consider the group code defined by e : B2 �o  B5 such that 
e ��00�� �  00000����������������e ��01�� �  01110������������������e ��10 �� �  10101������������������e ��11�� �  11011 . 
Decode  the following  words  relative  to  maximum  likelihood  decoding 
function. 
(a)  11110  (b)  10011  (c)  10100 

 
 
 

Solution : (a) 

Compute 

xt �  1110 

�G ��x��1�� , xt �� �  ��00000 �† 11110�� �  ��11110�� �  4 

�G ��x�� 2�� , xt �� �  ��01110 �† 11110�� �  ��10000�� �  1 

�G ��x��3�� , xt �� �  ��10101 �† 11110�� �  ��01011�� �  3 

�G ��x�� 4�� , xt �� �  ��11011 �† 11110�� �  ��00101�� �  2 

min��� �̂G ��x��i �� , xt ���  ̀�  1 �  �G ��x��2�� , xt ����
�?����e ��01�� �  01110 is the code word closest to xt �  11110 . 
�?  The  maximum  likelihood  decoding  function  d  associated  with  e  is 
defined by d �� xt �� �  01. 



 
 

(b) xt �  10011 
 

Compute �G ��x��1�� , xt �� �  ��00000 �† 10011�� �  ��11101�� �  4 

�G ��x�� 2�� , xt �� �  ��01110 �† 10011�� �  ��00110�� �  2 

�G ��x��3�� , xt �� �  ��10101 �† 11110�� �  ��01011�� �  3 

�G ��x�� 4�� , xt �� �  ��11011 �† 10011�� �  ��01000�� �  1 

min��� �̂G ��x��i �� , xt ���  ̀�  1 �  �G ��x��4�� , xt ����
�?����e ��11�� �  11011 is the code word closest to xt �  10011 . 
�?  The  maximum  likelihood  decoding  function  d  associated  with  e  is 
defined by d �� xt �� �  11. 

 
(c) xt �  10100 

 
Compute �G ��x��1�� , xt �� �  ��00000 �† 10100�� �  ��10100�� �  2 

�G ��x�� 2�� , xt �� �  ��01110 �† 10100�� �  ��11010�� �  3 

�G ��x��3�� , xt �� �  ��10101 �† 10100�� �  ��00001�� �  1 

�G ��x�� 4�� , xt �� �  ��11011 �† 10100�� �  ��01111�� �  4 

min��� �̂G ��x��i �� , xt ���  ̀�  1 �  �G ��x��3�� , xt ����
�?����e ��10�� �  10101 is the code word closest to xt �  10100 . 
�?  The  maximum  likelihood  decoding  function  d  associated  with  e  is 
defined by d �� xt �� �  10 . 

 

 
�ª 0  1  1 �º��
�«�� �»��
�« 1  0  1 �»��

Example  : Let H �  �«��1 0  0�� �» be a parity check matrix.  decode the 
�«�� �»��
�« 0  1  0 �»��
�«�¬ 0  0  1 �»�¼��

following  words  relative  to  a  maximum  likelihood  decoding  function 
associated with eH : (i)  10100,  (ii)  01101,  (iii)  11011. 

 
Solution : The code words are e��00�� �  00000,����e��01�� �  00101,����e��10�� � 10011, 

e ��11�� �  11110 .   Then N �  � 0̂0000,��00101,��10011,��11110�  ̀.   We implement 
the decoding procedure as follows.  Determine all left cosets of N in B5, 



 
 

as rows of a table.  For each row 1, locate the coset leader 
the row in the order. 

�Hi , and rewrite 

 
�H1,���Hi �†��

Example  : Consider the �� 2,��4����

��
��
encoding function e as follows.  How 

many errors will e detect?   
 

e ��00�� �  0000,����e ��01�� �  0110,����e ��10�� �  1011,����e ��11�� �  1100 
 

Solution : 
 

�† 0000 0110 1011 1100 

0000 --- 0110 1011 1100 

0110  --- 1101 1010 

1011   --- 0111 

1100    --- 
 

Minimum distance between distinct pairs of e �  2 �? k �� 1 �  2 �?��k �  1. 
�? the encoding function e can detect 1 or fewer errors. 

 
Example  : Define group code.  Show that  �� 2,��5����

��
��
��
encoding function 

e : B2 �o  B5 
 
defined by e ��00�� �  0000,����e ��10�� �  10101,����e ��11�� �  11011 

 
is a 

group code.   
 
 
 

Solution : Group Code 
 

�† 00000 01110 10101 11011 

00000 00000 01110 10101 11011 

01110 01110 00000 11011 10101 

10101 10101 11011 00000 01110 

11011 11011 10101 01110 00000 
 

Since closure property is satisfied, it is a group code. 
 

Example  : Define group code.   show that  �� 2,��5����

��
��
��
encoding function 

e : B2 �o  B5 
 
defined  by e ��00�� �  00000,����e ��01�� �  01110,����e ��10 �� �  10101 , 



 
 

e ��11�� �  11011 is a group code.  Consider this group code and decode the 
following words relative to maximum likelihood decoding function. 
(a)  11110  (b)  10011.   
Solution : Group Code 

 
�† 00000 01110 10101 11011 

00000 00000 01110 10101 11011 

01110 01110 00000 11011 10101 

10101 10101 11011 00000 01110 

11011 11011 10101 01110 00000 
 

Since closure property is satisfied, it is a group code. 
 
 

Now, let x��1�� �  00000,����x��2�� �  01110,����x��3�� �  10101,����x��4�� �  11011 . 
 

 
(a) xt �  11110 

 

�G ��x��1�� , xt �� �  ��x��1�� �† xt �� �  ��00000 �† 11110�� �  ��11110�� �  4 

�G ��x�� 2�� , xt �� �  ��x��2�� �† xt �� �  ��01110 �† 1110�� �  ��10000�� �  1 

�G ��x��3�� , xt �� �  ��x��3�� �† xt �� �  ��10101 �† 1110�� �  ��01011�� �  3 

�G ��x�� 4�� , xt �� �  ��x��4 �� �† xt �� �  ��11011 �† 1110�� �  ��00101�� �  2 

�? Maximum likelihood decoding function d �� x t �� �  01 . 
 

(b) xt �  10011 
 

�G ��x��1�� , xt �� �  ��x��1�� �† xt �� �  ��00000 �† 10011�� �  ��10011�� �  3 

�G ��x�� 2�� , xt �� �  ��x��2�� �† xt �� �  ��01110 �† 10011�� �  ��11101�� �  4 

�G ��x��3�� , xt �� �  ��x��3�� �† xt �� �  ��10101 �† 10011�� �  ��00110�� �  2 

�G ��x�� 4�� , xt �� �  ��x��4 �� �† xt �� �  ��11011 �† 10011�� �  ��01000�� �  1 

�? Maximum likelihood decoding function d �� xt �� �  11. 



 
 

�ª 1  0  0 �º��
��
��
��

Example : Let 

�«�� �»��
�« 0  1  1 �»��
�« 1  1  1 �»��H �  �«���� �� �» be a parity check matrix.  Determine 
�« 1  0  0 �»��
�« 0  1  0 �»��
�«�� �»��
�¬ 0  0  1 �¼��

the ��3,��6�� group code eH : B
3 �o  B6 . 

 

 

Solution : B3 �  � 0̂00,��001,��010,��011,��100,��101,��110,��111� �̀�
eH ��000�� �  000000����������������������eH ��001�� �  001111������������������������eH ��010�� �  010011 

eH ��011�� �  011100����������������������eH ��100�� �  100100������������������������eH ��101�� �  101011 

eH ��110�� �  110111����������������������eH ��111�� �  111000 
 

�?  Required group code = � 0̂00000 ,��001111,��010011,��011100,��100100,����

101011,��110111,��111000� �̀�
��

Example  : Show that �� 2,��5���� encoding function e : B2 �o  B5 defined 

by  e ��00�� �  00000,����e ��01�� �  01110,����e ��10 �� �  10101,����e ��11�� �  11011 is  a 
group code.    
Test whether the following �� 2,��5�� encoding function is a group code. 

e ��00�� �  00000,����e ��01�� �  01110,����e ��10�� �  10101,����e ��11�� �  11011 
 

 
 

Solution : 
 

�† 00000 01110 10101 11011 

00000 00000 01110 10101 11011 

01110 01110 00000 11011 10101 

10101 10101 11011 00000 01110 

11011 11011 10101 01110 00000 
 

Since closure property is satisfied, it is a group code. 
 

Example    :  Show  that  the  ��3,��7 ����
defined by 

 

encoding  function e : B3 �o  B7 

e ��000�� �  0000000��������������������������e ��001�� �  0010110������������������������������e ��010�� �  0101000 



 
 

e ��011�� �  0111110��������������������������e ��100 �� �  1000101��������������������������������e ��101�� �  1010011 

e ��110�� �  1101101��������������������������e ��111�� �  1111011 
 

is a group code. 
 

Solution : 
 

�† 0000000 0010110 0101000 0111110 1000101 1010011 1101101 1111011 

0000000 0000000 0010110 0101000 0111110 1000101 1010011 1101101 1111011 
0010110 0010110 0000000 0111110 0101000 1010011 1000101 1111011 1101101 
0101000 0101000 0111110 0000000 0010110 1101101 1111011 1000101 1010011 
0111110 0111110 0101000 0010110 0000000 1111011 1101101 1010011 1000101 
1000101 1000101 1010011 1101101 1111011 0000000 0010110 0101000 0111110 
1010011 1010011 1000101 1111011 1101101 0010110 0000000 0111110 0101100 
1101101 1101101 1111011 1000101 1010011 0101000 0111110 0000000 0010110 
1111011 1111011       0000000 

 
Since closure property is satisfied, it is a group code. 

 
Example:  Consider  the   ��3,��8����
defined by 

 

encoding  function e : B3 �o  B8 

e ��000�� �  0000000��������������������������e ��100�� �  10100100������������������������������e ��001�� �  10111000 

e ��101�� �  10001001��������������������������e ��010�� �  00101101��������������������������������e ��110�� �  00011100 

e ��011�� �  10010101��������������������������e ��111�� �  00110001 . 
How many errors will e detect? 

 

 
 

Solution : 
 

�† 
 

00000000 
 

10100100 
 

10111000 
 

10001001 
 

00101101 
 

00011100 
 

10010101 
 

00110001 

0000000 00000000 10100100 10111000 10001001 00101101 00011100 10010101 00110001 
10100100 10100100 00000000 00011100 00101101 10001001 10111000 00110001 10010101 
10111000 00000000 00011100 00000000 001100001 10010101 10100100 00101101 10001001 
10001001 10001001 00101101 00110001 00000000 10100100 10010101 00011100 10111000 
00101101 00101101 10001001 10010101 10100100 00000000 00110001 10111000 00011100 
00011100 00011100 10111000 10100100 10010101 00110001 00000000 10001001 00101101 
10010101 10010101 00110001 00101101 00011100 10111000 10001001 00000000 10100100 
00110001 00110001 10010101 10001001 10111000 00011100 00101101 10100100 0000000 

 
Minimum distance between pairs of e �  3 . 
�?��k �� 1 �  3�������? k �  2�������?The  encoding  function  e  can  detect  2  or  fewer 
errors. 



 
 

Example:  Consider  parity  check  matrix  H  given  by 
�ª 1  1  0 �º��
�«�� �»��
�« 0  1  1 �»��

H �  �«��1 0  0�� �» .  Determine the group code eH : B2 �o  B5 .  Decode the 
�«�� �»��
�« 0  1  0 �»��
�«�¬ 0  0  1 �»�¼��

following  words  relative  to  a  maximum  likelihood  decoding  function 
associated with eH : 01110,����11101,����00001,����11000 .  [Apr-04, May-07] 

 
Solution : B2 �  � 0̂0,��01,��10,��11� �̀�
eH ��00�� �  00x1x2 x3 

eH ��01�� �  01x1x2 x3 

eH ��10�� �  10x1x2 x3 

eH ��11�� �  11x1x2 x3 

where 

where 

where 

where 

x1 �  0.1 �� 0.0 �  0 
x2 �  0.1 �� 0.1 �  0 
x3 �  0.0 �� 0.1 �  0 

 
x1 �  0.1 �� 1.0 �  0 
x2 �  0.1 �� 1.1 �  1 
x3 �  0.0 �� 1.1 �  1 

 
x1 �  1.1 �� 0.0 �  1 
x2 �  1.1 �� 0.1 �  1 
x3 �  1.0 �� 0.1 �  0 
 
x1 �  1.1 �� 1.0 �  1 

x2 �  1.1 �� 1.1 �  0 

x3 �  1.0 �� 1.1 �  1 

 
 
 
 

�? eH ��00�� �  00000 
 
 
 
 
 

�? eH ��01�� �  01011 
 
 
 
 
 
�? eH ��01�� �  10110 
 
 
 
 
 

�? eH ��01�� �  11101 
 

�? Desired group code = � 0̂0000,����01011,����10110,����11101� �̀�
��

��
(1) xt �  01110 

�G ��x��1�� , xt �� �  ��x��1�� �† xt �� �  ��00000 �† 01110�� �  ��01110�� �  3 

�G ��x�� 2�� , xt �� �  ��x��2 �� �† xt �� �  ��01011 �† 01110�� �  ��00101�� �  2 

�G ��x��3�� , xt �� �  ��x��3�� �† xt �� �  ��10110 �† 01110�� �  ��11000�� �  2 

�G ��x�� 4�� , xt �� �  ��x��4 �� �† xt �� �  ��11101 �† 01110�� �  ��10011�� �  3 

�? Maximum likelihood decoding function d �� x t �� �  01 






